COMMON POOL OF GENERIC ELECTIVES (GE) COURSES OFFERED BY DEPARTMENT OF MATHEMATICS CATEGORY-IV

GENERIC ELECTIVES: FUNDAMENTALS OF CALCULUS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title \& Code	Credits	Credit distribution of the course		Eligibility criteria	Pre- requisite of the course (if any)	
	Lecture	Tutorial	Practical/ Practice			Class XII pass with Mathematics

Learning Objectives

The Learning Objectives of this course is as follows:

- Understand the quantitative change in the behaviour of the variables and apply them on the problems related to the environment.

Learning Outcomes

Upon completion of this course, students will be able to:

- Understand continuity and differentiability in terms of limits.
- Describe asymptotic behavior in terms of limits involving infinity.
- Understand the importance of mean value theorems and its applications.
- Learn about Maclaurin's series expansion of elementary functions.
- Use derivatives to explore the behavior of a given function, locating and classifying its extrema, and graphing the polynomial and rational functions.

SYLLABUS OF GE

Theory

Unit - 1

(20 hours)

Continuity and Differentiability of Functions

Limits and continuity, Types of discontinuities; Differentiability of functions; Successive differentiation: Calculation of the nth derivatives, Leibnitz theorem; Partial differentiation, Euler's theorem on homogeneous functions.

Unit - 2
(20 hours)

Mean Value Theorems and its Applications

Rolle's theorem, Mean value theorems and applications to monotonic functions and inequalities; Expansion of functions: Taylor's theorem, Taylor's series, Maclaurin's series expansion of $\mathrm{e}^{\mathrm{x}}, \sin \mathrm{x}, \cos \mathrm{x}, \log (1+\mathrm{x})$ and $(1+\mathrm{x})^{\mathrm{m}}$; Indeterminate forms.

Unit - 3
(20 hours)

Tracing of Curves

Concavity and inflexion points, Asymptotes (parallel to axes and oblique), Relative extrema, Tracing graphs of polynomial functions, rational functions, and polar equations.

Practical component (if any) - NIL

Essential Readings

- Anton, Howard, Bivens, Irl, \& Davis, Stephen (2013). Calculus (10th ed.). Wiley India Pvt. Ltd. New Delhi. International Student Version. Indian Reprint 2016.
- Prasad, Gorakh (2016). Differential Calculus (19th ed.). Pothishala Pvt. Ltd. Allahabad.

Suggestive Reading

- Thomas Jr., George B., Weir, Maurice D., \& Hass, Joel (2014). Thomas' Calculus (13th ed.). Pearson Education, Delhi. Indian Reprint 2017.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVES: THEORY OF EQUATIONS AND SYMMETRIES

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title \& Code	Credits	Credit distribution of the course		Eligibility criteria	Pre- requisite of the course (if any)	
Theory of Equations and Symmetries	4	3	1	0	Tutorial Practical/ Practice	with pass Mathematics

Learning Objectives
The goal of this course is to acquaint students with certain ideas about:

- Integral roots, rational roots, an upper bound on number of positive or negative roots of a polynomial.
- Finding roots of cubic and quartic equations in special cases using elementary symmetric functions.
- Using Cardon's and Descartes' methods, respectively.

Learning outcomes

After completion of this course, the students will be able to:

- Understand the nature of the roots of polynomial equations and their symmetries.
- Solve cubic and quartic polynomial equations with special condition on roots and in general.
- Find symmetric functions in terms of the elementary symmetric polynomials.

SYLLABUS OF GE

Theory

Unit-1
(24 hours)
Polynomial Equations and Properties
General properties of polynomials and equations; Fundamental theorem of algebra and its consequences; Theorems on imaginary, integral and rational roots; Descartes’ rule of signs for positive and negative roots; Relations between the roots and coefficients of equations, Applications to solution of equations when an additional relation among the roots is given; De Moivre's theorem for rational indices, the nth roots of unity and symmetries of the solutions.

Unit - 2

(16 hours)

Cubic and Biquadratic (Quartic) Equations

Transformation of equations (multiplication, reciprocal, increase/diminish in the roots by a given quantity), Removal of terms; Cardon's method of solving cubic and Descartes' method of solving biquadratic equations.

Unit - 3

(20 hours)

Symmetric Functions

Elementary symmetric functions and symmetric functions of the roots of an equation;
Newton's theorem on sums of the like powers of the roots; Computation of symmetric functions such as $\sum \alpha^{2} \beta, \sum \alpha^{2} \beta^{2}, \sum \alpha^{2} \beta \gamma, \sum \frac{1}{\alpha^{2} \beta \gamma}, \sum \alpha^{-3}, \sum(\beta+\gamma-\alpha)^{2}, \sum \frac{\alpha^{2}+\beta \gamma}{\beta+\gamma}, \ldots$ of polynomial equations; Transformation of equations by symmetric functions and in general.

Practical component (if any) - NIL

Essential Readings

- Burnside, W.S., \& Panton, A.W. (1979). The Theory of Equations (11th ed.). Vol. 1. Dover Publications, Inc. (4th Indian reprint. S. Chand \& Co. New Delhi).
- Dickson, Leonard Eugene (2009). First Course in the Theory of Equations. John Wiley \& Sons, Inc. The Project Gutenberg eBook: http://www.gutenberg.org/ebooks/29785

Suggestive Reading

- Prasad, Chandrika (2017). Text Book of Algebra and Theory of Equations. Pothishala Pvt Ltd.

(Category-IV)
 COMMON POOL OF GENERIC ELECTIVES (GE) COURSES OFFERED BY THE DEPARTMENT OF MATHEMATICS

GENERIC ELECTIVES (GE-2(i)): ANALYTIC GEOMETRY

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title \& Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/ Practice		
Analytic Geometry	4	3	1	0	Class XII pass with Mathematic s	NIL

Learning Objectives: The course aims at:

- Identifying and sketching curves, studying three dimensional objects, their geometric properties and applications.
- Use of vector approach to three-dimensional geometry makes the study simple and elegant.

Learning Outcomes: This course will enable the students to:

- Learn concepts in two-dimensional geometry.
- Identify and sketch conics namely, ellipse, parabola and hyperbola.
- Learn about three-dimensional objects such as straight lines and planes using vectors, spheres, cones and cylinders.

SYLLABUS OF GE-2(i)

UNIT - I: Conic Sections

(15 hours)
Techniques for sketching parabola, ellipse and hyperbola; Reflection properties of parabola, ellipse, hyperbola, and their applications to signals; Classification of quadratic equation representing lines, parabola, ellipse and hyperbola; Rotation of axes; Second degree equations.

UNIT - II: Vectors, Lines and Planes

(18 hours)
Rectangular coordinates in 3-dimensional space, vectors viewed geometrically, vectors in coordinate systems and vectors determined by length and angle; Dot product; Projections; Cross product, scalar triple product, vector triple product and their geometrical properties; Parametric equations of lines, direction cosines and direction ratios of a line, vector and symmetric equations of lines, angle between two lines; Planes in 3-dimensional space, coplanarity of two lines, angle between two planes, distance of a point from a plane, angle between a line and a plane, distance between parallel planes; Shortest distance between two skew lines.

